UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA

FUNDAMENTOS DE OPERACION Y MANTENIMIENTO
DE EQUIPO ELECTRICO EN LA INDUSTRIA

TESINA

QUE PARA OBTENER EL TITULO DE INGENIERO MECANICO ELECTRICISTA

PRESENTA

IGNACIO JESUS GARCIA SERRANO

ASESOR: ING. EUDOCIO RODRIGUEZ GARCIA

CD. UNIVERSITARIA

ABRIL DE 1999

T TK441 G34 c.1

UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA

FUNDAMENTOS DE OPERACION Y MANTENIMIENTO
DE EQUIPO ELECTRICO EN LA INDUSTRIA

TESINA

QUE PARA OBTENER EL TITULO DE INGENIERO MECANICO ELECTRICISTA

PRESENTA

IGNACIO JESUS GARCIA SERRANO

ASESOR: ING, EUDOCIO RODRIGUEZ GARCIA

CD. UNIVERSITÀRIA

ABRIL DE 1999

TESIS

AGRADECIMIENTOS

Señor:

Te doy gracias por haberme permitido llegar felizmente a este día y te pido que con tu luz me guíes y me acompañes siempre a lo largo de mi vida profesional.

A mis Padres:

Gracias por que nunca escatimaron en esfuerzos.

Porque son la formación de mi educación.

Por el apoyo y ejemplo que en cada segundo de mi vida me han brindado.

Por sus cuidados, amor y compresión.

Por sus sabios consejos que me orientaron por el camino recto de la vida.

Pero gracias principalmente por ayudarme a terminar mi carrera.

Profesional que representa para mí la mejor de mis herencias.

A mi Hermana:

Por brindarme su apoyo y su cariño y haberme comprendido cuando más lo necesitaba.

A mi Novia:

Por sus consejos y su apoyo que me ayudaron a tomar decisiones. Por haber estado conmigo y darme la tranquilidad en los momentos más dificiles.

A mis Catedráticos:

Porque gracias a ellos obtuve los conocimientos necesarios para tener una formación profesional la cual me servirá de base para desarrollarme en la vida.

INDICE

Prologo	A
Introduccion.	В
Capitulo 1	Introduccion a los equipos, mantenimiento y pruebas1
Capitulo 2	Pruebas de corriente directa para equipos electricos16
Capitulo 3	Pruebas de corriente alterna para equipos electricos38
Apendice	46
Bibliografia	48

Prólogo

El crecimiento en la demanda eléctrica en las ciudades, tanto en la población como en la industria tiene por consecuencia que las redes de distribución de las compañías generadoras y suministradoras se preocupen de una mayor calidad en sus suministros ya que con esto se logra una productividad en constante aumento que resulta en un beneficio que impacta en el crecimiento de la economía de nuestro país.

Como consecuencia de lo anterior los sistemas eléctricos para su buen funcionamiento dependen en gran parte de los mantenimientos preventivos y correctivos que garanticen un funcionamiento confiable y seguro de estos sistemas.

Las empresas actualmente se preocupan en forma sistemática de que sus departamentos de mantenimiento, ingeniería, producción, etc., estén actualizados y consientes de la importancia de tener programas de mantenimientos rutinarios en todas estas áreas.

Introducción

El desarrollo de esta tesina tiene la finalidad de brindar información a las personas relacionadas en el área de la ingeniería eléctrica sobre los fundamentos de los mantenimientos y pruebas que deben de hacerse a los equipos eléctricos para su buen funcionamiento.

Lleva también la intención de brindar al ingeniero que se inicia en este campo una información y herramientas que le puedan ser de utilidad para enfrentar los problemas de mantenimiento en su que hacer profesional.

CAPITULO 1

INTRODUCCION AL MANTENIMIENTO DE LOS EQUIPOS ELECTRICOS

1.1 Introduccion

En los equipos electricos, su deterioro empieza desde el momento en que empiezan a funcionar, para la cual se deven de prevenir los cambios de carga o alteracion en los circuitos, la razón de un mantenimiento electrico preventivo y un programa de pruebas son de gran importancia para alargar la vida del equipo.

1.2 Porque del mantenimiento

El mantenimiento y las pruebas que se le hacen a los equipos, reduce los paros de la empresa y los accidentes prolongando el tiempo de falla del equipo, dandonos como resultado un rendimiento del personal y de la empresa ademas de incrementos de productividad y en la habilidad de los empleados.

Con todo esto hay que hacer una planeacion de un programa de (MEPP) mantenimieto electrico preventivo y pruebas, teniendo puntos importantes como son la administracion.

La planeacion del programa (MEPP) deve incluir sus ventajas, costos, perdidas de la produccion por fallas del equipo, ademas de suministros de equipos de pruebas, herramientas, tiempos requeridos, personal y de tomarse en cuenta los factores o bases de mantenimiento, datos de equipos de quedan fuera de servicio, perdida de produccion, analisis de costo, conveniencia del mantenimiento, establecer las mejores tecnicas del mantenimiento.

Todo lo anterior va en conjunto con lo que ya es en si la puesta en marcha del programa de mantenimiento siendo lo escencial la responsabilidad que deven tener los departamentos, la inspeccion es decir la verificacion de las condicones de nuevos equipos instalados y hacer reparaciones, calendarios para su ejecucion, ordenes de trabajo que son establecidas por inspeccion de rutina, y archivos de reportes deven ser formados para tener acceso cuando sea necesario.

Otro punto importante, ademas de lo admnistrativo son los requisitos tecnicos que son los siguientes:

- Examinar el equipo de la planta
- Hacer un listado del equipo segun su importacia
- Hacer un plan para llevar a cabo un mantenimiento con frecuencia.
- Desarrollar procedimientos para el programa.

La examinación del equipo deve de tener datos acerca de la potencia del sistema, debera incluir diagramas unifilares, estudio de corto circuito, diagramas de alumbrado y demas diagramas importantes.

Diagramas de bloques son un grupo de bloques interconectados, los cuales representan un elemento del sistema como en la fig. 1.1.

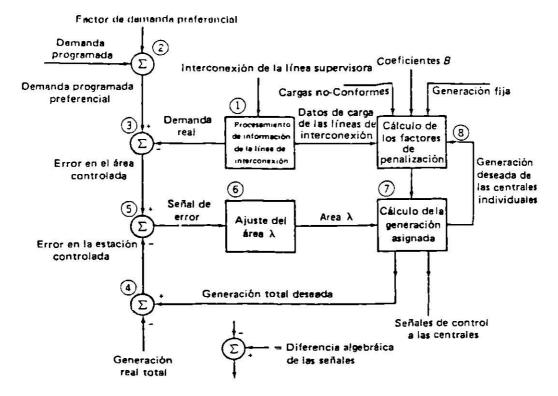
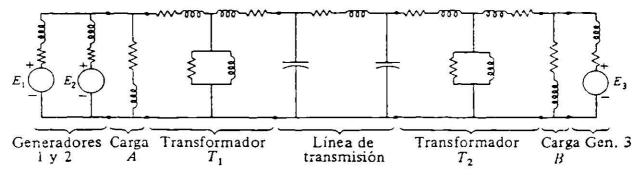



Fig. 1.1 Diagrama en bloques

Los diagramas unifilares nos muestran por medio de simples lineas y simbolos graficos, el flujo de la potencia electrica o el curso de los circuitos electricos y como estan interconectados, en la fig. 1.2. se muestra un diagrama unifilar.

Los diagramas de impedancia y reactancia se usan para estudiar el comportamiento de un sistema en condiciones de carga o al presentarse un corto circuito; aqui el unifilar se transforma a uno de impedancias y muestre el circuito equivalente de cada componente del sistema, referido al mismo lado de uno de los transformadores.

El diagrama de impedancias no incluye las impedancias limitadoras de corriente, que se ven en el unifilar entre los neutros de los generadores y tierra, porque en condiciones de equilibio, no circulan corrientes por la tierra y neutros de los generadores estan al mismo potencial que el neutro del sistema.

En un diagrama esquematico como el de la fig. 1.3 (a), este nos indica todos los circuitos y dispositivos de los elementos de los equipos; ademas nos indica los dispositivos de los elementos y funciones y siempre muestra mediante lineas a todos los dispositivos de un modo desenergizado.

En un diagrama de cableado, fig. 1.3 (b), es utilizado para localizar e identificar dispositivos electricos, terminales y cables interconectados y ensamblados. Este muestra cables interconectados por lineas y terminales.

Y en un diagrama de interconexion, fig. 1.3 (c), nos muestra las conexiones externas entre controles y equipos asociados o entre varias unidades de equipos ensamblados o asociados a un mismo interruptor.

1.3 Que debe incluir un programa (MEPP)

El programa de mantenimiento electrico preventivo y pruebas para tener una operacion eficiente y efectiva debe cubrir las siguientes actividades:

Mantenimiento electrico preventivo y pruebas

Este abarca la inspeccion, ajustes, limpiezas, pruebas de equipos para asegurar una operacion sin problemaspara predecir o impedir fallas de piezas de algun equipo y que puedan ser reemplzados a tiempo.

Reparaciones electricas.

Las reparaciones a equipos y maquinas asociadas con la produccion de una planta es un punto importante del mantenimiento. El objetivo del programa de mantenimiento debera evitar tiempos de paro de los equipos o maquinas.

Analisis de fallas

Estas deben ser analizadas para atender y valorar los tiempos de paro de los equipos o maquinaria por que aun que los equipos esten bien diseñados pueden fallar.

Tipos de metodos de pruebas

En las pruebas a los equipos electricos hay que revisar el aislamiento de los sistemas, propiedades electricas y otros relacionados con la operacion del sistema de potencia siendo las siguentes:

- Pruebas de aislamiento de estado solido
- Pruebas de dispositivos de proteccion
- Pruebas de aislamiento en liquidos (aceites)
- Analisis de tiempos de disparo en interruptores
- Pruebas de resistencia de tierra
- Pruebas y analisis de gases
- Pruebas de inspeccion infrarrojo (rayos)

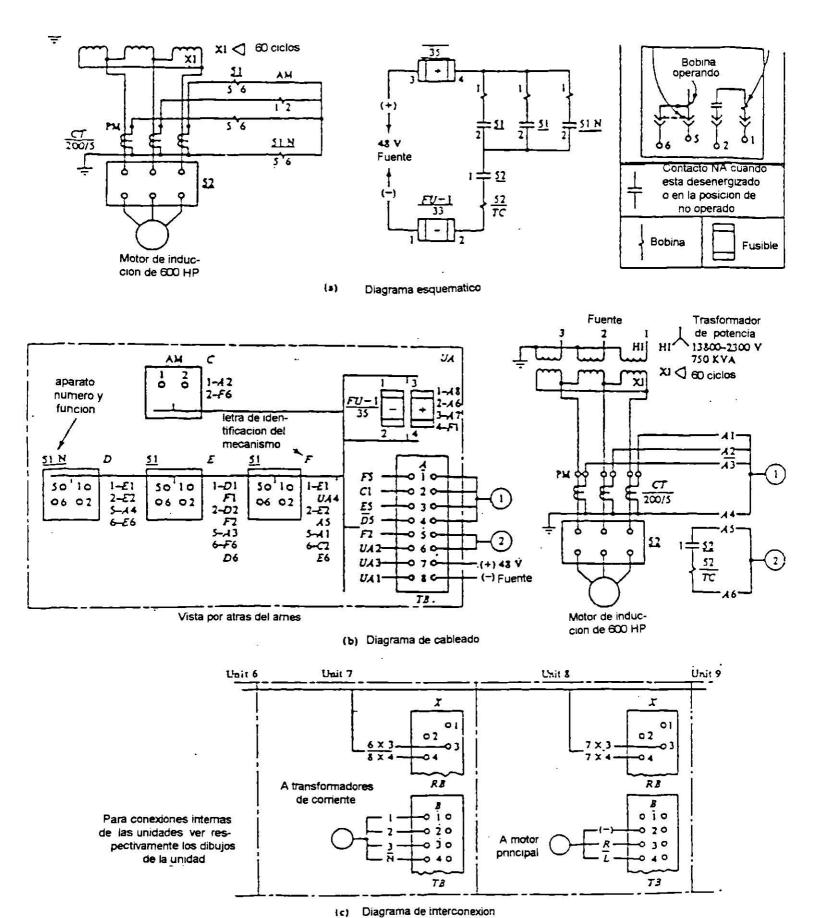


FIG. 1.3

PRUEBAS DE AISLAMIENTO DE ESTADO SOLIDO

El aislamiento puede ser de material dielectrico (solido, liquido o gas), y que prevenga flujo electrico entre puntos de diferente potencial. Esto es aplicar un alto potencial de voltaje y determinar mediante pruebas de la corriente de fuga que fluye bajo estas condiciones de prueba. Una corriente excesiva de fuga puede indicar las condiciones de deterioro y una falla. Estas pruebas se hacen con los voltajes siguientes, voltaje de corriente directa (CD), voltaje de corriente alterna (CA).

En las pruebas destructivas que son llevadas a cabo mediante la aplicación de bajos voltajes el equipo sometido a prueba ramente es dañado.

La prueba destructiva o de alto potencial de corriente alterna es una prueba en la cual el voltaje es incrementado hasta un nivel especificado. Si el equipo falla o muetra una corriente de fuga excesiva, el equipo bajo prueba queda inutilizable. Si el equipo no falla entonces ha superado la prueba.

Algunas de las ventajas y desventajas de las pruebas de alto potencial de CD son las sigís.

Ventajas

La prueba de CD es preferida en equipo cuya carga capacitiva es muy alta, tal como los cables.

El esfuerzo en una prueba de CD es menos dañino que en una prueba de CA

El tiempo de aplicacion de un voltaje en una prueba de CD no es tan critico como el voltaje en una prueba CA

La prueba puede ser detenida antes de que falle el equipo.

No es necesario hacer pruebas de aislamiento de resistencia en forma separada de una prueba de sobrepotencial de CD

Desventaias

La distribución de esfuerzo para transformadores, motores y generadores es diferente para un voltaje de CD que para uno de CA

La carga residual despues de una prueba CD es mas dañina al ser descargada

El tiempo requerido para hacer una prueba de alto potencial de CD es mas largo que en CA

Pruebas de aislamiento de estado solido en voltaje CD

En esta se realizan las pruebas de la resistencia de aislamiento y la prueba de voltaje de alto potencial

Prueba de resistencia de aislamiento

Esta prueba se hace aplicando voltajes de 100 a 5000 volts. Se utiliza el megohmetro con mecanismo manual, motorizado o electronico, el cual indica la resistencia de aislamiento en megohms.

La calidad del aislamiento es evaluado tomando como base un nivel de resistencia de aislamiento, el cual puede variar, dependiendo de la temperatura, humedad y otros factores ambientales. Por lo tanto las lecturas de las pruebas deberan ser corregidad de acuerdo con un standard de humedad y temperatura, ver tabla 1.1.

El valor de la resistencia de aislamiento en megohmetro es inverso al volumen de aislamiento en que esta seindo probado. Como ejemplo, un cable de 167 mts de longitud (500 pies) debera tener 1/10 de la resistencia de aislamiento de un cable de 50 pies bajo condiciones identicas. Esta prueba nos da una indicación del deterioro del aislamiento, los valores de la resistencia de aislamiento no nos indica los puntos de debilidad ni tampoco los esfuerzos dieletricos, pero si nos indica la contaminación del aislamiento.

FACTORES DE CONVERSION DE RESISTENCIA DE AISLAMIENTO A 20 ° C

-			
Temperatura (°C)	en aceite	tipo seco	
0	0.25	0.40	
5	0.36	0.45	
10	0.50	0.50	
15	0.75	0.75	
20	1.00	1.00	
25	1.40	1.30	
30	1.98	1.60	
35	2.80	2.05	
40	3.95	2.50	
45	5.60	3.25	
50	7.85	4.00	
55	11.20	5.20	
60	15.85	6.40	
65	22.40	8.70	
70	31.75	10.00	
75	44.70	13.00	
80	63.50	16.00	

Los valores medidos de las resistencias de aislamiento pueden hacerse mediante 5 metodos que son:

- Lecturas de tiempo corto

Tabla 1.1

Esta prueba muestra el valor de la resistencia de aislamiento para una duracion de 30 a 60 seg. Las lecturas obtenidas se comparan con algunas anteriores y su interpretencion es hace con las tablas normalizadas a 20 °C con efectos de humedad.

- Lecturas de tiempo-resistencia

Un sistema con buen aislamiento muetra un incremento continuo de los valores de resistencia sobre un periodo de tiempo en el cual un voltaje es aplicado y el efecto de la corriente de absorcion (ver apendice) decrece a medida que el tiempo se incrementa y si un sistema esta contaminado con polvo e impurezas muestra baja resistencia y el efecto de la corriente de absorcion se traduce en una alta corriente de fuga (ver apendice).

Las lecturas tiempo-resistencia pueden ser usadas para indicar las condiciones del aislamiento del sistema. La razon de las lecturas a 30 y 60 seg. es llamada relacion de absorcion dielectrica (RAD) unidades es megohmetro.

Una relacion (RAD) abajo de 1.25 es necesaria una investigacion o una repacion de un aparato electrico.

- Lecturas de picos de voltaje

Esta prueba es aplicada en forma de picos para que el aislamiento que esta bajo prueba, sea fijado por un voltimetro. A medida que el voltaje es incrementado los puntos debiles de aislamiento deberan mostrar resistencias bajas que no se mustran con bajos nivels de voltaje. Residuos, polvos pueden ser detectados a niveles de voltajes bajos, esto es mas abajo de los voltajes de operacion, mientras que un daño fisico, un aislamiento malo, solo puden ser detectados con altos voltajes.

- Prueba de absorcion dielectrica

La prueba de absorcion es hecha con voltajes de 100 kilovoltios aplicado en un tiempo de 5 a 15 min. La prueba es evaluada tomando como base la resistencia de aislamiento, si este esta en buenas condiones, la resistencia de aislamiento debera increementarse a medida que la prueba es desarrollada.

- Prueba de clasificación de polarización

La prueba de clasificacion de polarizacion es una especializacion de la de absorcion dielectrica, la clasificacion de polarizacion es la razon de la resistencia de aislamiento en 10 min a la resistencia de aislamiento en 1 min. Una clasificacion menor de 1 indica deterioro en el equipo y necesita un mantenimiento inmediato y se utiliza para cables, transformadores y maquinas giratorias.

La otra prueba de las que se realizan de aislamiento de estado solido en voltaje CD es la siguiente:

Prueba de voltaje de alto potencial

Esta se da con un voltaje aplicado a traves del aislamiento por encima del voltaje de operacion (1.41 veces). Cuando un voltaje de alto potencial es aplicado a una prueba de absorcion dielectrica, el maximo voltaje es aplicado en un periodo de 60 a 90 seg. y el maximo voltaje es mantenido por 5 min, tomando lecturas de corriente de fuga cada minuto, si esta prueba es aplicada en la prueba de picos de voltaje, el voltaje es aplicado en incrementos iguales no menores a 8, en el cual cada pico de voltaje es mantenido en intervalos de tiempos iguales.

El intervalo de tiempo en cada pico (o paso) debera ser entre 1 y 4 minutos, y al final de cada intervalo deben ser tomadas las lecturas de comiente de fuga y de resistencia de aislamiento antes del siguiente pico. Las pruebas de mantenimiento son hechas con un voltaje maximo abajo de 75 % del voltaje de prueba maximo permitiendo en pruebas de aceptacion.

Pruebas de aislamiento de estado solido en voltaje CA

Se pueden hacer varias pruebas para determinar las condiciones del aislamiento del sistema siendo estas:

Prueba de alto potencial

Esta prueba es conocida como la prueba de Hi-Pot (CA), es hecha con un voltaje por encima del voltaje nominal de operacion del sistema por un corto tiempo (1 min.).

Prueba de aislamiento del factor de potencia

Esta prueba esta basada de que los valores bajos de factor de potencia, el factor de disipacion puede suponerse lo mismo que el factor de potencia.

El factor de discipacion es igual a la tangente del angulo S, donde S es igual a 90 °0.

El factor de potencia es igual al coseno del angulo entre la corriente de carga y el voltaje aplicado.

El aislamiento del factor de potencia es importante para determinar la calidad del aislamiento para transformadores, interruptores, maquinas giratorias, cables, reguladores y liquidos aislantes.

Precauciones a tomar en la prueba.

El equipo bajo prueba debera estar aislado del resto del sistema.

La preuba debera hacerse a una temperatura superior a 32 °F (0 °C) y con una humedad relativa abajo del 70 %.

El equipo de prueba debera ser capaz para producir una onda de 60 ciclos a un voltaje de por lo menos de 2500 volts.

El minimo voltaje de prueba no debera ser menor a 5000 Volts, en todos los casos.

La evaluación de los datos de la prueba debera estar basada con estandares comparativos de la industria con valores de otrs equipos similares, o con resultados de preubas previos en equipo similares.

PRUEBAS A DISPOSITIVOS DE PROTECCION

Las Pruebas a dispositivos involucran pruebas y mantenimiento de interruptores de bajo voltaje, conexiones, relevadores y equipos como transformadores de instrumentos y cableados de baja tension.

Mantenimiento a interuptores

Los interruptores (ver apendice) durante las operaciones de apertura y cierre se ven sometidos a esfuerzos mecanicos de accionamiento y a esfuerzos dielectricos y termicos el los contactos.

Esta accion hace que los interruptores eventualmente puedan fallar en la parte mecanica y/o en los contactos, por esta razon se debe especificar un numero de maniobras mecanicas determinadas pudiendose indicar:

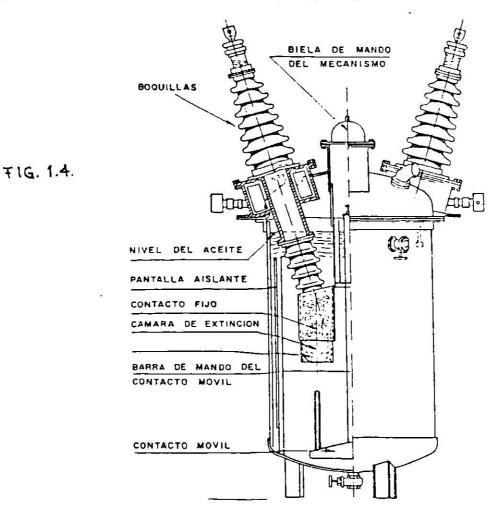
- Maximo numero de maniobras.
- Efecto termico en los contactos y se expresa por el numero de maniobras a determinado valor de corriente.

Por ejemplo:

Los contactos deben permitir antes de su reemplazo las siguientes interrupciones:

- Tres interrupciones a maxima corriente de corto circuito
- Cinco interrupciones al 50 % de la maxima corriente de corto circuito.
- Diez interrupciones al 15 % de la maxima corriente de corto circuito.

Otra forma de especificar el aspecto de tiempo de vida en los contactos es por amperes acumulados que deba ser capaz dse soportar el interruptor, simplemente se indica una cantidad equivalente al numero obtenido anteriormente, pero sin indicar cada valor particular.


Entre las pruebas a los interruptores prototipos se encuentran:

- 1) Prueba de interrupcion de corriente de corto circuito simetrico.
- 2) Prueba de interrupcion de corriente de corto circuito asimetrica.
- 3) Prueba de interrupcion de pequeñas corrientes inductivas
- 4) Prueba de interrupcion de comientes capacitivas
 - 4.1 Desconexion de bancos de condensadores.
 - 4.2 Desconexion de lineas en vacio.

- 5) Desconexion y cierre en oposicion de fase.
- 6) Desconexion asincronica.
- 7) Recierre sobre falla y operacion monopolar.

Las pruebas recomendadas como de rutina son:

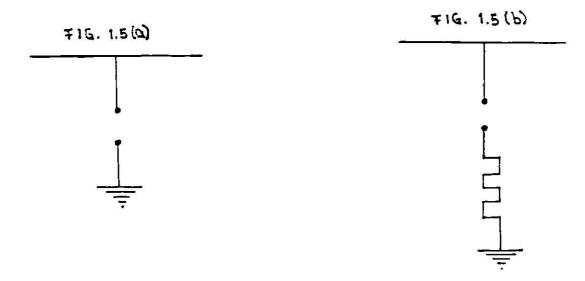
- a) Pruebas de comportamento mecanico.
- b) Medicion de la resistencia de los circuitos principales.
- c) Prueba de calentamiento en los circuitos principales y auxiliares.
- d) Prueba de aislamiento en los circuitos principales y auxiliares.

INTERRUPTOR EN GRAN VOLUMEN DE ACEITE.

Cuando opera el interruptor figura 1.4 debido a una falla, los contactos moviles se desplzan hacia abajo, separandose de los contactos fijos. Al alejarse los contactos moviles de los fijos se va creando una cierta distancia entre ellos, y en funcion de esta distancia esta la longitud del arco. El arco da lugar a la formacion de gases, de tal manera que se crea una burbuja de gas alrededor de los contactos que desplaza una determinada cantidad de aceite.

Conforme aumenta la separacion entre los contactos, el arco crece y la burbuja se hace mayor, de tal manera que al quedar los contactos en su separacion total, la presion ejercida por el aceite es considerable, por lo que en la parte superior del recipiente se instala un tubo de fuga de gases.

Apartarrayos


Las sobretensiones que se presentan en las instalaciones de un sistema pueden ser de tipo atmosferico y por fallas en el sistema

El apartarrayos es un dispositivo que permite proteger las instalaciones contra sobretensiones de origen atmosferico. Para la proteccion del mismo se deben de tomar en cuenta los aspectos que si son de descargas directas sobre la instalacion y descargas indirectas.

El caso que se presenta mas es el de descargas indirectas (ver apendice), y el apartamayos, que se encuentra conectado en el sistema, opera cuando se presenta determinada descarga, frenando la corriente a tierra. Su principio general de operacion se basa en la formacion de un arco electrico entre dos explosores cuya separacion esta determinada de acuerdo con la tension a la que va a operar.

La funcion del apratarrayos no es eliminar las ondas de sobretension presentadas durante las descargas atmosfericas, sino limitar su magnitud a valores que no sean perjudiciales para las maquinas del sistema.

Los aparatarrayos mas usados son apartarrayos tipo autovalvular figura 1.5 (a) (ver apendice) y de tipo resistencia variable figura 1.5 (b) (ver apendice).

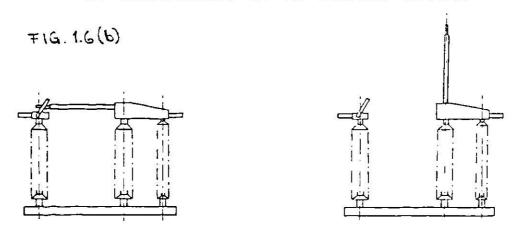
Pruebas a cuchillas desconectadoras

El valor de corriente de corto circuito es el mismo (simetrico y asimetrico) calculado para la especificación de interrupciones.

En el caso de las cuchillas desconectadoras (ver apendice), solo se tiene el proposito de indicar su capacidad dinamica y termica ya que las cuchillas no tienen capacidad interruptiva, pero si en cambio deben soportar en forma satisfactoria los esfuerzos termicos. (figura 1.6 a y b).


Desde el punto de vista dielectrico se especifican los valores necesarios de tension para la coordinación de aislamiento en la subestación.

Los niveles basicos a vereficar son:


- El nivel basico de aislamiento al impulso por rayo.
- Tension de flameo a 60 Hz en seco.
- Determinacion del nivel del ruido.

Especificaciones adicionales

- Corriente de corto circuito dinamica, sirve para verificar el comportamiento mecanico de las cuchillas, especialmente en los soportes.
- Corriente de corto circuito termica, normalmente se especifica a 1 seg, y tiene como objetivo determinar el comportamiento termico de la cuchilla especialmente en las uniones.
- Prueba mecanica de operacion, se especifica un determinado numero de maniobras de apertura y cierre en la cuchilla para verificar el correcto compotamiento mecanico de las cuchillas y de sus elementos auxiliares de accionamiento.

CUCHILLA DESCONECTADORA DE TRES COLUMNAS CON ACCIONAMIENTO EN LA COLUMNA CENTRAL.

CUCHILLA DESCONECTADORA DE TRES COLUMNAS Y APERTURA VERTICAL.

Relevadores

Todos los relevadores figura 1.7 a y b funcionan en respuesta a una o mas magnitudes electricas cerrando o abriendo contactos, sus principios de operacion son de atraccion e induccion electromagnetica (ver apendice) .

Las principales características funcionales de los relevadores usados en la protección de subestaciones son las siguientes:

- a) Bajo voltaje, baja corriente y baja potencia.
- b) Sobre voltaje, sobre comiente y sobre potencia.
- c) Direccionales o de corriente inversa.
- d) Direccional o de potencia inversa.
- e) Diferencial.
- f) De distancia.

Los transformadores de potencia pueden estar sujetos a los siguietnes tipos de fallas, sobre cargas o corto circuito externo, fallas en los devanados, fallas en las terminales y fallas incipientes.

Cualquier condicion de falla produce esfuerzos mecanicos y termicos en los devanados del transformador, las sobrecargas se pueden sostener por periodos de tiempo mas o menos largos, estando limitadas solo por las elevaciones de temperatura permisibles en los devanados y el aceite, desde luego por las sobre cargas excesivas deterioran el aislamiento y producen las fallas subcecuentes.

Las fallas en las terminales del transformador si son en el lado de alimentación no tienen efecto severo en el transformador, pero las que ocurren en el lado de carga lo tienen, este tipo de fallas no hacen operar a los relevadores Buchholz, debido a esto se deden ajustar las zonas de protección de los relevadores diferenciales o de falla a tierra.

La mayoria de las fallas internas o son fallas a tierra o de fase a fase, la severidad de estas fallas depende de su localizacion, diseño del transformador y del metodo de conexion a tierra del transformador.

Las fallas incipientes son fallas de tipo interno que no constituyen un riesgo inmediato, sin embargo, si se dejan sin detectar pueden conducir a fallas mayores. La mayoria de este tipo de fallas son las de bobina a nucleo debido a fallas de aislamiento, o bien fallas de aislamiento entre laminaciones del nucleo o tambien fallas en el aceite debido a perdidas u obstruccion, en cualquier caso se presenta un sobre calentamiento en el transformador.

Las protecciones aplicadas a los transformadores son:

- Relevadores de presion de gas y aceite.
- Relevadores de sobrecomiente y de falla a tierra.
- Relevador de falla a tierra restringida.
- Proteccion diferencial.
- Fuga a tanque o herraje.

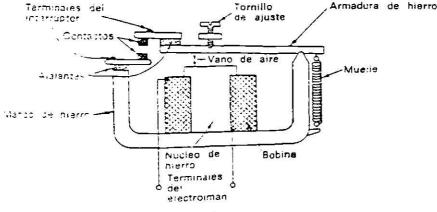
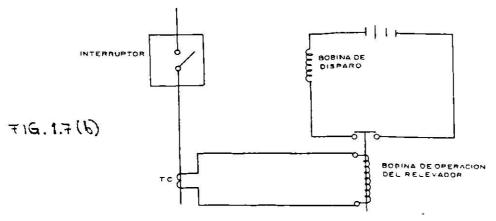



FIG 1.360 Rele basico

La representación típica del circuito de un relevador

Pararrayos

Los pararrayos (ver apendice) no evitan los rayos, sino que mas bien evitan que las cargas se acumulen en los edificios en los que estan puestos. El pararrayos figura 1.8 debera unirse a un conductor introducido en el suelo con una profundidad segun la NOM para que siempre este rodeada de tierra humeda, si no se entierra adecuadamente, el pararrayos puede ser mas bien una amenaza que una proteccion, ya que facilitara la descarga de las nubes.

Los objetos altos aislados en espacios abiertos tales como un arbol aislado en un terreno grande acumulan las cargas rapidamente y son, por lo tanto, presa facil de los rayos. Los edificios con estructura de acero tienen numerosas partes metalicas que se extienden hasta dentro de la tierra y, por lo tanto, tienen una buena proteccion.

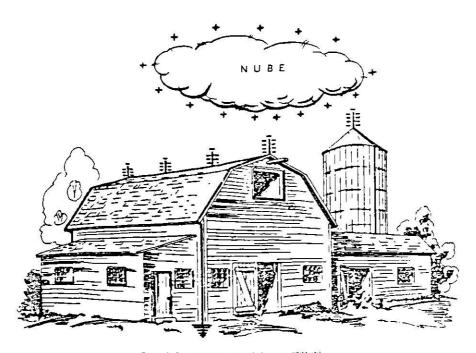


Fig. 1.8 Aplicación del pararrayos.

PRUEBAS DE AISLAMIENTO DE LIQUIDOS (ACEITES)

El aislamiento de liquidos usados en transformadores o en otros aparatos electricos estan sujetos a contaminación, la cual perjudica las propiedades del iaslamiento de los devanados. Los elementos que causan deterioro de el aislamiento de los liquidos son: humedad, temperatura, oxigeno y otros que resultan de reacciones quimicas que producen acidos y sedimentos.

El aislamiento a base de liquido que hoy en dia estan en uso son: aceites, askarel y silicona, sin embargo el uso de askarel ha sido prohibido por el alto grado de toxicos que contiene.

Las pruebas se recomiendan regularmente para monitorear las condiciones del aislamiento de los líquidos. Se deben tomar pruebas de los líquidos de los equipos en periodos para hacer pruebas de acuerdo con los metodos de los ASTM de acuerdo a la tabla 1.2.

Tabla 1-2 Métodos de la ASTM para pruebas en los aislamientos de los líquidos.

Prueba	Métodos de pruebas ASTM
Acidez	D1534 o 1902
Color	D1500
Voltaje de Ruptura Dieléctrica	D877 (silicona askarel)
-	D1816 Aceite
Examinación Visual	D1524 Aceites
	D1702 Askarel
Tensión Interfaces	D971
(únicamente aceite)	D2285
Número de Neutralización	D974; D664
Factor de Potencia	D924

PRUEBA DE RESISTENCIA DE ELECTRODOS DE TIERRA.

Un sistema integral de tierras es importante en un sistema electrico de potencia por las siguientes razones:

- Para mantenerse un punto de potencia de referencia para los equipos y seguridad del personal.
- Para proveer un punto de descarga para ondas viajeras debido a descargas atmosfericas (rayos).
 - Para prevenir altos voltajes excesivos debido a voltajes inducidos en los sistemas de potencia.

Por lo tanto para mantener un potencial de tierra efectivo se requieren pruebas periodicas a los electrodos del sistema de tierras, siendo su escala en ohms.

PRUEBAS Y ANALISIS DE FALLAS DE GASES

Las pruebas y analisis de fallas de gases pueden proveer informacion sobre fallas incipientes en aceites de transformadores y gases presentes en la capa de nitrogeno de el transformador.

Debido a la temperatura algunos aceites de transformadores se descomponen y generan gases combustibles, los cuales se mezclan con el nitrogeno en la capa superior del aceite.

Una pequeña muestra de nitrogeno puede ser obtenida del transformador para este proposito. Esta prueba se determina en una escala de porcentaje de gases de combustible.

PRUEBAS DE INSPECCION INFRARROJA

Hay diferentes dispositivos disponibles usados en pistolas infrarrojas para revisar puntos calientes en conexiones y otras partes energizadas de un sistema de potencia.

Hay varias rutinas practicas en mantenimiento en inspeccion para determinar puntos calientes en uniones, terminales o lineas sobrecargadas.

Desde luego el costo de esos dispositivos varian en un amplio rango y pueden ser economicos si estos equipos son rentados al hacer inspecciones de rutina en equipos de sistemas electricos de potencia.

CAPITULO 2

PRUEBAS DE CORRIENTE DIRECTA PARA EQUIPOS ELECTRICOS

2.1 Introduccion

En este capitulo con la información de estas pruebas se indica si el mantenimiento es correctivo o reemplazo del equipo instalado, se asegura si el equipo recien instaldo puede ser energizado con seguridad y la carta de deterioro gradual del equipo.

Los metodos de prueba de CD que se cubriran son transformadores, liquidos aislantes, cables, interruptores, motores y generadores; siendo estos níveles y metodos de prueba de voltaje en su mayor parte de acuerdo con los estandares industriales para los tipos de equipo.

Los valores de voltaje de CD es recomendado para amnufactura del equipo sea consultado para pruebas especificas y de niveles de voltaje cuando la informacion para un equipo no pueda ser obtenida, esto es sugerido para evitar daños al sistema del material aislante.

2.2 Transformadores

La prueba de CD de transformadores (ver apendice) implica pruebas de aislamiento de estado solido expuesto al viento y liquidos aislantes usados en transformadores.

La prueba de aislamiento solido y expuesto al ambiente completa otras pruebas de transformadores.

Las pruebas de CD son consideradas no destructivas o igual como si al tiempo ellas pudieran causar deterioro ambiental, esto puede ser un resultado de un deterioro que la prueba fue supuesta y detectada. Si esta la sido detectada, esto podra ocurrir a un tiempo determinado.

La prueba de conductividad de CD para transformadores de aislamiento se dan en el orden de prioridades.

Mantenimiento de resistencia de aislamiento

Esta prueba se da por encima de un voltaje para determinar si estos, son resistentes bajo el suelo o camino o medio ambiente.

Los valores de mantenimiento de la prueba son afectados por la temperatura, humedad, voltaje de prueba y tamaño del transformador. Esta prueba puede conducir antes y despues de reparacion o mantenimiento de operacion.

Los datos de prueba pueden ser recordados para comparaciones futuras.

Los valores de prueba pueden ser normalizados a 20 °C para propositos de comparaciones.

Los factores de conversion son presentados en la tabla 2.1.

La regla del pulgar es utilizada para valores aceptables hasta 1 megaohm / 1,000 volts de aplicación en la prueba de voltaje.

La mustra de valores de resistencia de buen aislamiento en el sistema son presentados en la tabla 2.2

Tabla 2.1 Conversión de factores a 20° C de Aislamiento Resistivo

Transformador Temperatura (°C) en aceite tipo seco 0 0.250.40 5 0.36 0.45 10 0.50 0.50 15 0.75 0.75 20 1.00 1.00 1.40 25 1.30 30 1.98 1.60 2.80 35 2.05 3.95 2.50 40 45 5.60 3.25 50 7.85 4.00 55 11.20 5.20 15.85 6.40 60 8.70 22.40 65

31.75

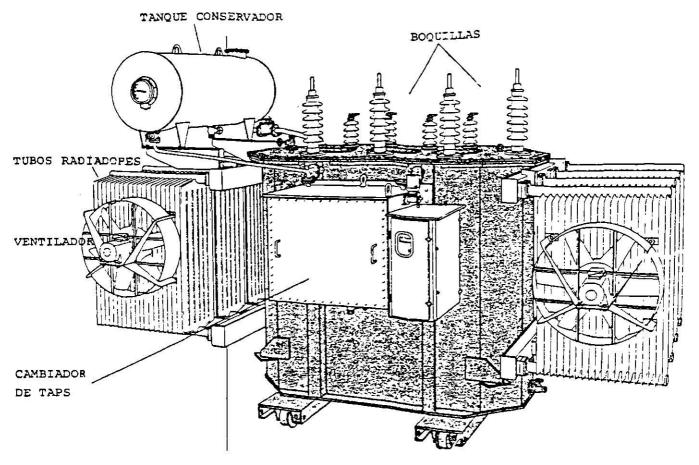
44.70

63.50

10.00

13.00

16.00

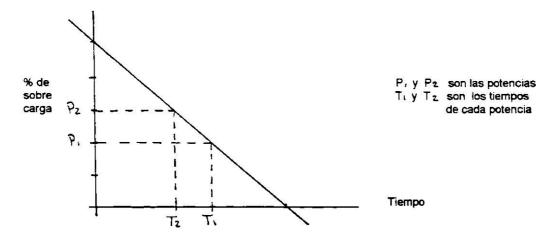

Tabla 2.2 Valores típicos de resistencia de aislamiento para transformadores de distribución y potencia

70

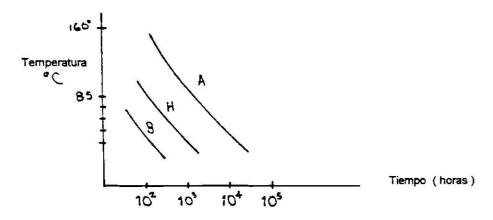
75

80

BOBINAS DEL TRANSFORMADOR		BOBINA A TIERRA (M.,			
VOLTAJE (KV)	20° C	30° C	40° C	50° C	60° C
Menores de 6.6	400	200	100	50	25
6.6 a 19	800	400	200	100	50
22 a 45	1,000	500	250	125	65
66 y mayores	1,200	600	300	100	75



TRANSFORMADOR DE POTENCIA


La capacidad de sobrecarga de un transformador, es funcion de su capacidad de disipacion de calor, o sea que en cualquier situacion de operacion, un transformador se puede sobrecargar sobre su capacidad nominal por un cierto periodo de tiempo. Por ejemplo, para transformadores de distribucion sumergidos en aceite, la norma ANSI C57.96, da los siguientes valores:

Numero de veces la corriente nominal del transformador
25.00 11.30 6.70
4.75 3.00 2.00

En general la curva de operacion de un transformador con sobrecarga tiene la siguiente forma:

Esta curva corresponde a la curva de vida de los aislamientos:

Los tiempos y valores de sobrecarga se expresan para periodos de operacion de 24 horas y son aplicables 1 vez por dia.

Para los transformadores de potencia se puede aplicar un criterio similar, dado que el comportamiento de la vida de los aislamientos con respecto a la temperatura es el mismo; solo que en algunos casos, se trata de determinar cual es la capacidad de calor en Kilo-calorias / min.

El enfriamiento base para transformadores de potencia es el tipo. OA para el cual esta definida una capacidad de discipación de calor dependiente del area dada por el tanque y los tubos radiadores.

En los transformadores de potencia, por cada periodo de 24 horas, se considera admisible una sobrecarga (sin producir daño al equipo) de un 50 % sobre su potencia nominal por periodo de 1 hora. (Max. 24 horas). Sobrecargas superiores son admisibles por menos tiempo o inferiores por menos tiempo. Por ejemplo, el 25 % de sobrecarga en dos periodos de 4 horas es aceptable.

OA Enfriamiento tipo base 100 Mva Con picos de 1 hora. Se puede obtener 150 Mva + 25 % FA

Niveles de aislamiento en transformadores y autotransformadores

Dependiendo de la clase de aislamiento del transformador en sus devanados de alto y bajo voltaje se especifican los niveles basicos de aislamiento al impulso por rayo y por maniobra de interrupciones (este ultimo para tensiones de 400 Kv).

Los valores basicos de aislamiento en los transformadores de potencia, se toman dependiendo del criterio de coordinacion de aislamiento y en funcion de las características de los apartarrayos seleccionados, se pueden tener los siguientes casos con relacion a los aislamientos internos y externos y sus características de aislamiento:

- El nivel de aislamiento interno es mayor que el nivel de aislamiento externo.
- . El nivel de aislamiento interno es igual al nivel de aislamiento externo.
- El nivel de aislamiento interno es menor que el nivel de aislamiento externo.

El punto de partida del analisis, es el aspecto economico y se considera la confiabilidad al margen de proteccion del apartarrayos.

Las decisiones adaptadas son dos:

- Niveles de aislamiento interno y externo iguales, lo que significa por ejemplo que de acuerdo a normas para un transformador de 230 / 115 Kv.

	Devanados	Boquillas *
En 230 Kv	1050 Kv	1050 Kv
En 115 Kv	550 Kv	550 Kv

* Apartarrayos de 80 % de proteccion instalado tan cerca como sea posible del transformador.

Para el criterio del aislamiento exterior mayor que el nivel de aislamiento interno, se tiene por ejemplo:

Nivel basico externo	Nivel basico interno*	
1050 Kv	900 Kv	
550 Kv	450 Kv	
	1050 Kv	

* Apartarrayos con mayor margen de protección que cuando los niveles de aislamiento interno y externos son iguales.

Cambiadores de derivacion

Los voltajes encontrados representan una regulación fina, con respecto a la tensión nominal, desde luego, permite regular el voltaje en las redes electricas a que se conectan, dependiendo de los valores de carga, pero tambien cumplen con la función de contribuir al control de reactivos en la red, ya que para cada voltaje obtenido en un tap (ver apandice), la excitación requerida por el transformador es diferente y consecuentemente el consumo de reactivos.

La instalación de los mismos se puede hacer en el devanado de alto o en el devanado de bajo voltaje. La decisión en que devanado se deben instalar, obedece a varios factores que se deben analizar y son los siguientes:

- El nivel de tension
- Magnitud de la corriente
- La exactitud en la regulacion (numero de pasos)
- El tamaño del transformador
- La forma de realizacion (sin carga o con carga)

Un Tap instalado en el lado de bajo voltaje, tiene las siguientes ventajas y desventajas.

Ventajas

- 1.- Mejor regulacion de voltaje, ya que, al estar instalado en el lado de carga, se puede tener una mejor sensibilidad.
- Menor nivel de aislamiento, lo que reduce las distancias dielectricas internas entre electrodos.

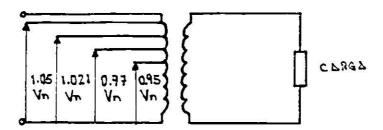
Desventajas

- 1.- Manejo de corrientes elevadas, lo que da una mayor robustez en las partes vivas del cambiador.
 - 2.- Ocupa mas espacio proporcionalmente a los espacios disponibles en los devanados.
 - 3.- Generalmente cuesta mas en baja tension, sobre todo si es con carga.

El uso de Taps en alta tension tiene las siguientes ventajas y desventajas:

Ventajas

- 1.- A pesar de requerir mayor nivel de aislamiento, es decir, mayores distancias dielectricas, por manejar corrientes menores, es menos robusto y proporcionalmente al nivel de voltaje ocupa menor espacio.
 - Se introducen menos transitorios de tension.


Desventajas

- 1.- Cuando se usan cambiadores de derivación sin carga, el numero de taps esta limitado, no solo por los problemas de regulación, mas bien por razones constructivas.
- 2.- Generalmente la regulacion de voltaje es mas fina en el lado de carga de un transformador que en el lado de linea.

Con relacion al uso de cambiadores de derivacion con carga y sin carga se pueden hacer los siguientes comentarios:

Cambiadores sin carga.

- 1.- Se requiere que el transformador este completamente desenergizado para poder hacer la maniobra del cambio de Tap.
- 2.- El numero de pasos generalmente es restringido, siendo costrumbre usar 2 ó 3 pasos de 2.5 % del voltaje nominal hacia arriba y hacia abajo, por lo mismo no se puede tener una regulación fina.

3.- El costo de estos cambiadores es bajo, en el peor de los casos no llega a ser el 3 % del costo del transformador.

Cambiadores con carga.

- 1.- Permiten una regulacion de voltaje fina, ya que se pueden tener ademas del voltaje nominal
 20 y hasta 32 pasos de regulacion en el lado de alta tension.
 - 2.- La regulacion de voltaje se puede hacer con carga y en forma automatica.
 - 3.- El costo representa entre el 30 y el 40 % del costo del transformador.
 - 4.- Requiere de un circuito de control que introducen un costo adicional a la instalacion.
- 5.- Para redes electricas con grandes variaciones de voltaje entre las condiciones de maxima y minima demanda permiten una regulacion de voltaje eficiente, ya que se pueden dejar para operacion continua.
 - 6.- Requiere de mas mantenimiento comparativamente con los cambiadores sin carga.

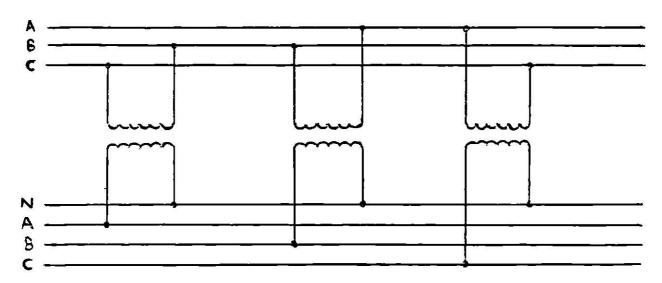
Las tendencias es a usar cambiadores de derivacion con carga en redes electricas de alta tension, es decir, en niveles de 230 Kv y 400 Kv por razones de un mejor control de reactivos y voltaje en el sistema, a pesar de que como se ha indicado aanteriormente su costo representa un alto porcentaje del costo del transformador.

Este tipo de cambiador de derivaciones se encuentra instalado normalmente en forma exterior al transformador de potencia, ya sea junto al tanque o separado y dependiendo del diseño del fabricante puede osupar mayor o menor espacio en la subestacion, dentro del llamado modulo de transformacion.

Conexiones de transformadores

La ASA (American Standars Asociation) elaboro un sistema para marcar las terminales de los transformadores, por lo que se llego a que las terminales del aldo de alto voltaje se marcan H1, H2 y H3 y las del bajo voltaje se marcan X1, X2 y X3. La terminal H1 esta siempre situado del lado izquierdo, cuando el transformador se ve del lado de bajo voltaje.

Entre las conexiones que podemos encontrar se encuentran las siguientes:


1.- Conexion delta - delta

Esta se utilza comunmente en lugares donde existen tensiones relativamente bajas: como en sistemas de distribucion que se utilizan para alimentar cargas trifasicas a 3 hilos.

2.- Conexion delta - estrella

Esta conexion se emplea en aquellos sistemas de transmision en que es necesario elevar voltajes de generacion, en sistemas de distribucion conveniente por que se pueden tener 2 voltajes diferentes (entre fase y neutro).

Esta conexion es la mas utilizada por lo cual las pruebas que se presentan en este trabajo son de este tipo de conexion

3.- Conexion estrella - estrella

Esta conexion se emplea en tensiones muy elevadas, ya que se disminuye la cantidad de aislamiento.

4.- Conexion estrella - delta

Esta se utiliza en los sistelas de transmision de las subestaciones receptoras cuya funcion reducir voltajes. es empleada en algunas ocaciones para distribucion rural a 20 Kv.

5.- Conexion delta abierta - delta abierta

Esta se ser una conexion de emergencia en transformadores trifasicos, ya que si en un transformador se quema o sufre una averia cualquier de sus fases, se puede seguir alimentado carga trifasica operando el transformador a dos fases, solo que su capacidad disminuye a un 5.8 % aprox. Estos transformadores se emplean es sistemas de baja capacidad y usualmente operan como autotransformadores.

Los procedimientos de prueba son los siguentes:

- No desconecte la conexion a tierra en el transformador del tanque y nucleo. Asegurese que el tanque y el nucleo del transformador esten aterrizados.
- Desconecte todo el alto voltaje, bajo voltaje y conexion a neutro, apartarrayos, sistemas de ventilacion, contador o algun sistema de control de bajo voltaje.
- Antes de iniciar la prueba soltar juntas todas las conexiones de alto voltaje, asegurandose que los colados sean limpios de todo metal y partes a tierra. Tambien suelte juntos todos los bajos voltajes y conexiones aneutro, asegurandose que los colados sean limpios de todo metal y partes a tierra.
 - Use un megohmetro con una escala minima de 20,000 Mega-ohms.
- Mantenimiento de resistencias son entonces puestas entre cada una de las bobinas y tierra. La bobina debe ser medida teniendo la tierra removida en orden a medicion de resistencia de aislamiento.
- El megohmetro puede tomar lecturas si es mantenido por un periodo de un minuto. Hace las siguientes lecturas para transformadores de arrollamientos:

Arrollamiento de alto voltaje a bobina de bajo voltaje y a tierra.

Bobina de alto voltaje a tierra.

Bobina de bajo voltaje a bobina de alto voltaje y a tierra.

Bobina de bajo voltaje a tierra.

Bobina de alto voltaje a bobina de bajo voltaje.

Las conexiones para estas pruebas son presentadas en las fugas 2.1 (a) hasta (e) y 2.2 (a) hasta (e).

- El megohmetro puede ller o grabar a lo largo de la prueba de temperatura (° C). La lectura puede ser correcta a 20 ° C para los factores de correccion presentados en la tabla 2.1. Si los valores de prueba de campo correctos son un medio o mas de lecturas de aislamiento de fabrica a 1,000 megaohms o cualquier menor, el transformador es considerado para la prueba de alta potencia.
 - Para transformadores de tres arrollamientos, la prueba podra ser hecha como sigue:

```
Alta a baja, terciario y a tierra (H-LTG)
Terciario a alta, baja y tierra (T-HLG)
Baja a alta, terciario y a tierra (L-HTG)
Alta, baja y terciario a tierra (HT-G)
Alta, baja y terciario a tierra (HT-LG)
Baja y terciario a alta y tierra (LT-HG)
Alta y baja a terciario y tierra (HL-TG)
```

- No se puede hacer la prueba del megohmetro del arrollamiento de transformador sin el liquido del transformador porque el valor de resistencia de aislamiento en aire puede ser menor que el liquido. Tampoco podra ser la resistencia de aislamiento del transformador cuando este bajo vacio por la posibilidad de una descarga a tierra.

En la figura 2.2 las conexiones de prueba expuestas en (a), (c) y (e) son mas utilizadas. Las conexiones de prueba en la figura 2.2 (b) y (d) son practicamente iguales a las lecturas de conexiones de prueba (c) y (e).

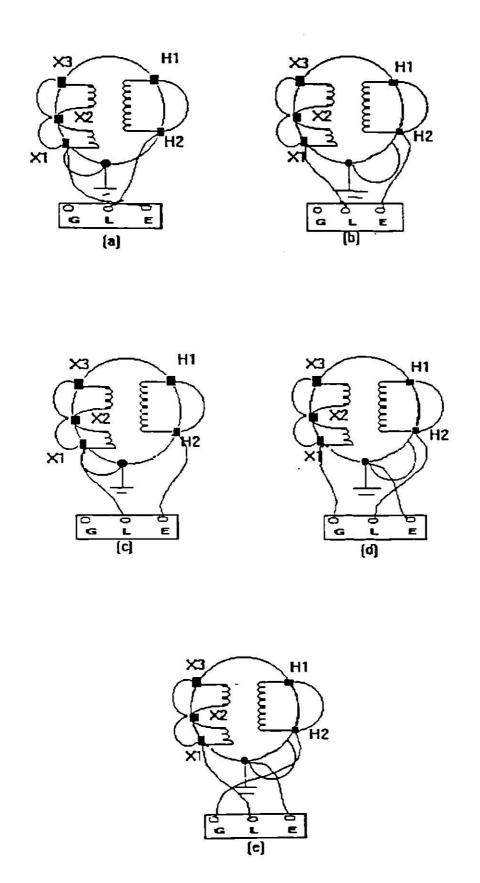
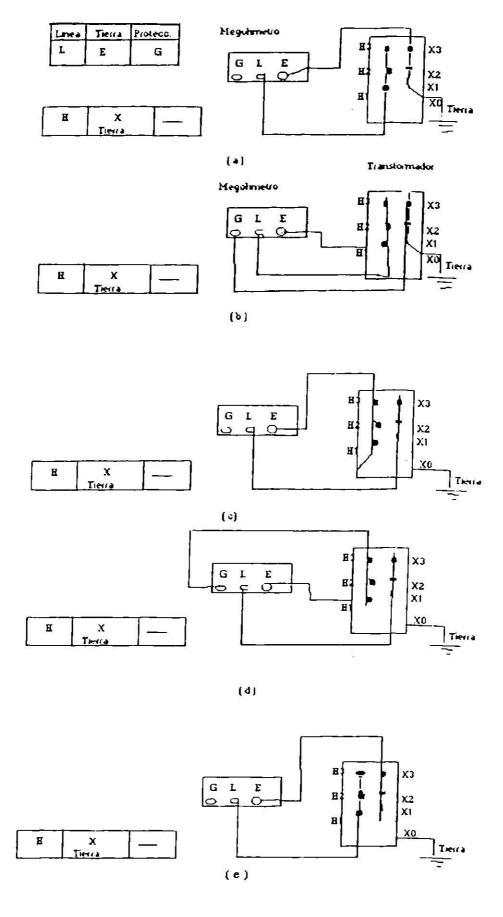



Fig. 2.1 Prueba de conexiones para aislamiento resistivo de transformadores de una sola fase

Lig. 2.2. Conexiones de prueba para resistencia de aislamiento para transformadores trifásicos. (a) Conexión de bobina de alta a bobina de baja a tierra; (b) Conexión para bobina de alta a tierra y bobina de alta protegida, (c) Conexión de bobina de baja a bobina de alta a tierra; (d) Conexión de bobina de baja a tierra y bobina de alta y protegida, (e) Conexión de bobina de alta a bobina de baja.

- Prueba de absorcion dielectrica

Esta prueba es una extension de la prueba de medicion de resistencia de aislamiento para transformadores expuestos al ambiente. La prueba consiste en aplicar voltaje por 10 minutos y tomar lecturas de medicion de resistencia a intervalos de 1 minuto.

Los valores de resistencia medidos durante esta prueba son graficados en papel logaritmico con coordenadas de resistencia contra tiempo.

La inclinacion de la curva para un buen sistema de aislamiento es una linea recta incrementandose con respecto al tiempo, mientras que un pobre sistema de aislamiento tiene una curva de caida con respecto al tiempo.

Estas son dos pruebas especiales bajo la prueba de absorcion dielectrica.

- Prueba para indice de polarizacion

La razon de resistencia de bobinas para valores de 10 minutos hasta 1 minuto es definida como el indice de polarizacion (PI). El PI proporciona informacion sobre la humedad y deterioro del aislamiento de las bobinas. Los valores del PI pueden variar desde arriba de 2 hasta por debajo de 1.

Un valor aceptable debe de ser menor de 1 y mayor de 1, valores entre 2 y 1 indican condicion minima aceptable y valores inferiores a 1 indican una condicion no aceptable.

Prueba de razon de absorcion dielectrica

La razon de resistencia de aislamiento en bobinas para valores desde 6 segundos hasta 30 segundos, esta definida como la razon de absorcion dielectrica (DAR).

Esta prueba proporciona informacion similar a la prueba PI excepto que la duracion de la prueba es mas corta.

Las conexiones y procedimientos de prueba para conductores son iguales para mantenimiento de resistencia de aislamiento de las bobinas del transformadores.

Prueba de alto potencial en CD (Hi-pot)

La prueba de alto potencial en CD es aplicada en alto porcentaje de voltaje para evaluar la condicion del aislamiento de las bobinas del transformador.

La prueba de alto voltaje en CD no es recomendada en transformadores de potencia por encima de 34.5 Kv; en su lugar la prueba de alto potencial en c.a. debe ser usada.

Generalmente, por rutina el mantenimiento del transformador, esta prueba no es empleada por la posibilidad del daño al aislante de la bobina

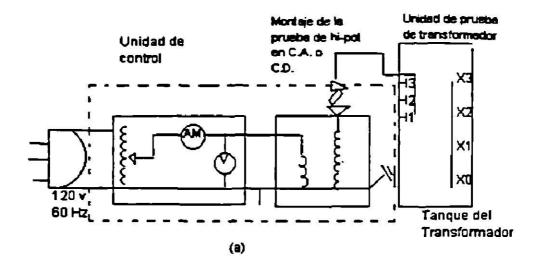
De cualquier modo, esta prueba es hecha para aceptacion y reparar los transformadores.

En caso que la prueba de hi-pot sea dirigida para un mantenimiento de rutina los valores de la prueba no deben de exceder del 65 % de los valores de prueba de fabricacion, el cual es igual a 1.6 veces el valor del tiempo de c.a. para pruebas periodicas.

La prueba de hi-pot de CD puede ser aplicada como una medicion de la prueba de voltaje donde las lecturas de corriente de salida son tomadas por cada medicion.

Si la corriente de salida es excesiva es notificada, el alto voltaje puede ser atrasado antes de dañar la pieza. Por esta razon, la prueba de hi-pot en CD es considerada una prueba no destructiva.

Algunas compañías llevan a cabo la prueba de hi-pot de c.a. para indice de voltaje por 3 minutos para pruebas periodicas en lugar del 65 % de la prueba de voltaje de fabrica. Los valores de la prueba de hi-pot para voltajes de CD son mostradas en la tabla 2.3.


TABLA 2.3
VALORES DE LA PRUEBA DIELECTRICA PARA MANTENIMIENTO DE RUTINA DEL LIQUIDO DE LOS TRANSFORMADORES.

Bobina del Transformador	Factor de Prueba	Mantenimiento de Rutina
Razón de Voltaje (KV)	Voltaje de C. A (KV)	Voltaje de C.D. (KV)
1.2	10	10.40
2.4	15	15.60
4.8	19	19.76
8.7	26	27.04
15.0	34	35.36
18.0	40	41.60
25.0	50	52.00
34.5	70	72.80

El procedimiento se ve en la figura 2.3 (a) y (b) para la conexion de esta prueba.

- El transformador debe tener aprobada la prueba de resistencia de aislamiento antes de iniciar esta prueba.
 - El transformador debe ser seguro de la carcasa, nucleo y tierra.
- Desconectar todo el alto voltaje, bajo voltaje y conexiones a neutro, sistema de control de bajo voltaje, sistema de ventilacion y conecte los contadores a las bobinas y nucleo del transformador.

- Cortocircuite con cables uniendo todas las conexiones de alto voltaje a el mismo potencial con respecto a tierra. Tambien cortocircuite con cables el bajo voltaje y el conectado a tierra.
- Conecte la prueba de alto potencial realizandola entre alto voltaje y tierra. Gradualmente aumente el voltaje por 1 minuto, despues decremente gradualmente el voltaje hasta cero.
- Quite el bajo voltaje a los cables a tierra y conecte la prueba de alta potencia realizandola entre las bobinas de bajo voltaje y tierra. Gradualmente aumente el voltaje por 1 minuto, despues decremente gradualmente el voltaje hasta cero.
- Si el procedimiento de las dos pruebas no causa daños o fallas el transformador es considerado satisfactorio y puede ser energizado.
- Desconecte todos los cables y vuelva a conectar todas las conexiones del primario y secundario y otros equipos del sistema que este pueda tener desconctados.

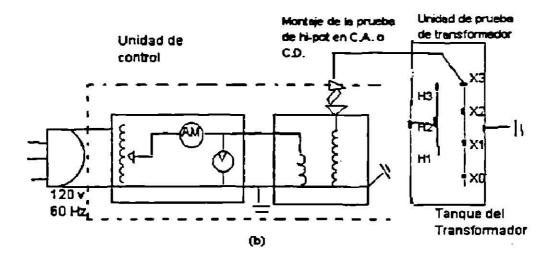


Figura 2.3 conexión de la prueba de alto voltaje del transformador (hi-pot) a: Conexión de la prueba hi-pot en las bobinas de alta. (b) Conexión de la prueba de hi-pot en las bobinas de baja.

Precauciones y consideraciones al ejecutar la prueba de hi-pot

El liquido en el transformador de los dos sistemas de aislamiento estan en serie, esto es, aislamiento solido con aceite o fluido sintetico. Cuando a la prueba de hi-pot de c.a. o c.d. se aplica voltaje, la caida de voltaje es distribuida como sigue:

Voltaje	Papel celulosa aislamiento	Aceite	
C.A.	25 %	75%.	
C.D	75 %	25 %	

Cuando utilice corriente directa en el liquido del transformador, el aislamiento solido puede ser sobrecargado.

Este aislamiento puede ser debilitado cerca al neutro, puede permanecer en servicio debido a la baja tension bajo condiciones de operacion. De cualquier modo, cuando el voltaje esta sujeto a la prueba de hi-pot, este puede caer y requeriri reparacion inmediata. El aislamiento debilitado puede ser detectado por la medicion de bajos voltajes.

Si una prueba de hi-pot es llevada a cabo por un mantenimiento de rutina, hay que considerar :

- 1.- Simular una falla que pueda ocurrir.
- 2.- Tenner un repuesto o pieza a la mano.
- 3.- Tener personal disponible para desempeñar el trabajo.

2.3 Cables y accesorios

Las pruebas de cables por la carta de deterioro gradual por los años, hace aceptables las pruebas de la instalación, para vereficación de empalmes y uniones, y para probar reparaciones especiales.

El mantenimiento prueba el criterio a ejecutar sobre los cables que estan a prueba de voltaje para el 60 % de la prueba final de voltaje de fabricación.

Las pruebas de voltaje de CD en cables, son medidas la resistencia de aislamiento y la prueba de alta potencia en CD (prueba de hi-pot en CD). La prueba de hi-pot en CD puede ser hecha como caida de corriente contra prueba de voltaje y caida de corriente contra prueba de tiempo.

Estas son propiedades del comportamiento de la primera prueba de medicion para resistencia de aislamiento, y si los datos obtenidos son bien vistos, entonces se procede con la prueba de sobrepotencial.

- Prueba de medicion de la resistencia de aislamiento

La resistencia de aislamiento es medida por un instrumento consistente de un generador de voltaje directo, y un ohmetro de alto rengo, este da lecturas de aislamiento en ohms y megaohms; este es un metodo no destructivo para determinar la condicion del aislamiento del cable para comprobar la contaminación debido a humedad, suciedad o carbonización.

El metodo de medicion de resistencia de aislamiento no da la lectura de resistencia dielectrica de aislamiento no da la lectura de resistencia dielectrica de aislamiento del cable o fragilidad en el cable, siendo los siguientes voltajes usados para indicar cables.

Rango de voltaje del cable

Voltaie del Megohmetro

abajo de 300 Volts 300 a 600 Volts 2.4 a 5 Kv arriba de 5Kv 500 Volts 500 a 1 Kv 2.5 a 5 Kv arriba de 5 Kv

El siguiente es el procedimiento general cuando se utiliza un megohmetro (Megger) para la prueba de medicion de resistencia.

- Desconecte el cable a ser probado por otros equipos y circuitos para garantizar que no esta energizado.
- Descargue toda la capacitancia (ver apendice) almacenada en el cable por tiera antes de la prueba, ademas despues de terminal la prueba.
 - Conecte la terminal de linea del aparato al conductor a prueba.
- Aterriza los otros conductores juntos en la vaina y a tierra. Conecte este a la terminal de tierra del aparato de la prueba.
- Igualmente tome otros valores de resistencia de aislamiento entre un conductor y otros conductores conectados, un conductor a tierra y sobre manera.

Las conexiones son presentadas en la figura 2.4 (a) hasta (d).

- La terminal de proteccion del megohmetro puede ser usada para eliminar los factores de perdidas de superficie a traves de aislamiento expuesto en la parte final del cable, o ambos extremos del cable o perdidas por tierra.

Las mediciones de resistencia de aislamiento debe ser realizada a intervalos regulares y registrada para propositos de comparacion. Guardado en la memoria para comparaciones; las lecturas deben ser correctas a una baja temperatura, tal como 20 °C.

Un continuo descenso en una indicación de aislamiento deteriorado aunque los valores medidos de resistencia son superiores a los limites mínimos aceptados.

- Prueba de sobrepotencial en CD

Esta prueba es para la aprobacion y mantenimiento de cable. Ello indica la condicion relativa del aislamiento a voltajes mayores o cercanos a los niveles de operacion.

Esta prueba es usada para la identificación de debilidades en el aislamiento del cable y ademas para una averia o falla incipiente aunque no se recomienda. Por lo tanto, la falla incipiente de averias probables debe ser anticipado antes, y durante la prueba de hi-pot.

Si el cable falla esto es indicado por los cambios en la fuga de comiente, y si anteriormente el aislamiento es dañado la prueba puede ser detenida.

Los valores de voltaje de prueba para CD en la prueba de hi-pot estan basados sobre la prueba de voltaje final de fabrica, el cual esta determinado por el tipo y espesor de aislamiento, el tamaño del conductor, la construccion del cable, y aplicaciones en los estandares industriales.

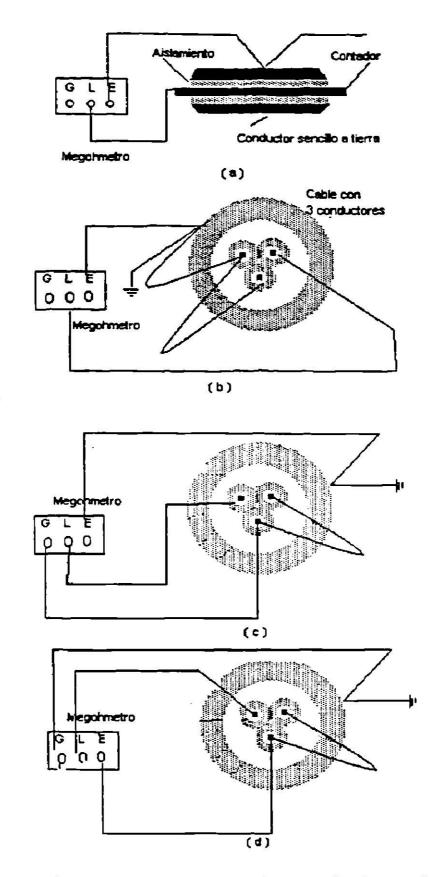


Figura 2.4 Conexiones de la prueba de cable para medición de la resistencia de aislamiento: (a) Conexión para la prueba de un conductor sencillo y un conductor a tierra. (b) Conexión para un cable de tres conductores, un conductor a otro conductor y el envolvente a tierra. (c) Conexión para un cable de tres conductores, un conductor a la vaina y a tierra y dos conductores protegidos. (d) Conexión para un cable de tres, un conductor a todos los otros conductores sin perdidas por tierra.

Los valores de la prueba de CD correspondientes a un factor de CA de prueba apara los voltajes de CA para cada sistema de aislamiento.

Esta razon se distingue como K la cual cuando es multiplicada por la prueba de aceptacion con un factor del 80 % y manteniendo el factor del 60 % produciendo los factores de conversion para obtner los voltajes de prueba de CD para las pruebas de hi-pot, siendo estos factores de conversion para prueba de voltajes los mostrados en la tabla 2.4.

Como una regla general, para la existencia de cables el mayor valor para mantenimiento no debe exceder del 60 % del voltaje de prueba final de fabricacion, y el valor minimo de prueba no debe ser menor que el de CD equivalente del voltaje de operacion.

En caso que el cable no pueda ser desconectado de todo el equipo conectado, el voltaje de prueba debe ser reducido a el nivel de voltaje de menor valor del equipo conectado.

La prueba de hi-pot puede ser conducida como un paso de la prueba de voltaje como sigue.

Tabla 2.4
FACTORES DE CONVERSION PARA LA PRUEBA DE HI-POT EN C.D.

		Factor de Conversión		
Tipos de aislantes	K	Aceptación de C.D. Voltaje de prueba (0.8 x k)	Mantenimiento de C.D. Voltaje (0.6 x k)	
Papel impregnado cubierto de plomo	2.4	1.92	1.44	
Cuagulo de vamiz	2.0	1.60	1.20	
Resistencia de hule compuesto de goma	3.0	2.40	1.80	
Polietileno	3.0	2.40	1.80	
Cloruro de polivinilo	2.2	1.76	1.32	
Compuesto de goma	2,2	1.76	1.32	

Voltaje contra prueba de caida de corriente

Aqui el voltaje es elevado en iguales pasos y el tiempo es puesto entre cada paso apra la caida de corriente para llegar a ser estable; siendo la corriente alta como el voltaje aplicado debido a la capacitiancia de la corriente de carga, caida de corriente en la superficie, y corriente de descarga parcial.

Como instantes del paso, estas corrientes transitorias llegan a ser minimas con el estado estable de la corriente restante, que es la actual caida de corriente y una pequeña cantidad de absorcion de corriente.

En cada paso de voltaje, la caida de comiente registrada es tomada antes del procedimiento al siguiente paso, usualmente, es recomendado por lo menos en ocho pasos iguales de voltaje y 1 a 4 minutos entre pasos.

La caida de comiente contra voltaje son trazados como una curva. Tan larga como esta trazada la curva es lineal para cada caso, el sistema de aislamiento esta en buena condicion, pero si la caida de corriente empieza a aumentar debe ser notificado en el mostrado en la figura 2.5 punto A.

Si la prueba es seguida mas alla de esta prueba de voltaje, la caida de corriente se incrementa rapido y de inmediato cae puede suceder en el aislamiento del cable. A menos que la caida sea deseada la prueba debe ser detenida tan pronto como sucede el incremento de la inclinacion y sea notificado en la curva de voltaje de voltaje contra la caida de corriente.

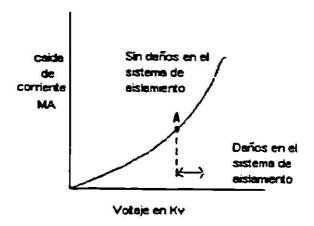


Fig. 2.5 Paso de votaje alto - potencial prueba de comente .

Caida de corriente contra tiempo de prueba

Cuando el voltaje de prueba final de caida de corriente contra prueba de voltaje es alcanzado, puede ser dejado encendido 5 minutos, y la caida de corriente contra tiempo puede ser trazada para intervalos regulares de tiempo como la caida de corrietne durante estos pasos para un alto valor inicial hasta un valor en estado estable.

Una buena curva como la figura 2.6 para cables debe indicar un decremento en la caida de comiente con respecto a tiempo o un valor en estado estable sin algun incremento de comiente durante la prueba.

fig. 2.6
Caída de corriente contra tiempo

Prueba de sobrepotencial

La prueba de hi-pot es como un funciona, o no funciona en la prueba de sobrepotencial. El voltaje es aplicado gradualmente para suministrar un estado de caida de comiente hasta el valor especificado, usualmente, 1 a 1.5 minutos es suficiente para alcanzar el voltaje final de prueba y ya llegado al voltaje final es mantenido por 5 minutos, y si el aumento en la comiente por la falla de corto circuito, la prueba estara bien; aunque esta prueba no proporciona suficiente informacion como de resistencia requerida.

Este tipo de prueba es realizada despeus de la instacion y reparacion, donde solo un cable resiste la verificacion de fuerza sin un daño estaria certificado.

Prueba de sobrepotencial de CD (conexiones y procedimientos)

La prueba de conexiones para esta prueba son iguales a los que muestran en la figura 2.4 (a) y para cables de tres conductores son iguales a los que muestran en la figura 2.4 (b) y (c). Los procedimientos de prueba son los siguientes:

- El cable puede ser pobrado si esta desenergizado, abierto en ambos extremos si es posible, y aterrizado a descarga, ninguna carga electroestatica en el cable. Interruptores, transformadores de potencia, carga detenida, fusibles, apartarrayos y algunos interrutores deben ser desconectados.

Si es imposible desconectar alguno o varios de los equipos conectados ver figura 2.7 para ver equipos a ser desconectados, la prueba de voltaje no debe exceder el valor al cual podran sobretensionarse estos dispositivos conectados al cable.

- La prueba de voltaje de CD debe ser aplicada para fase a tierra en cada conductor con otros conductores, protecciones y carcasas metalicas conectadas a tierra u otros conductores con proteccion y carcasas metalicas aterrizadas.
- Asegurese que el interuptor principal ON OFF del aparato del hi-pot este en la posicion de apagado (off) y el interuptor de encendido del alto voltaje en la posicion de apagado (off) con el interruptor del control de voltaje colocado en la posicion de cero antes de iniciar la prueba.

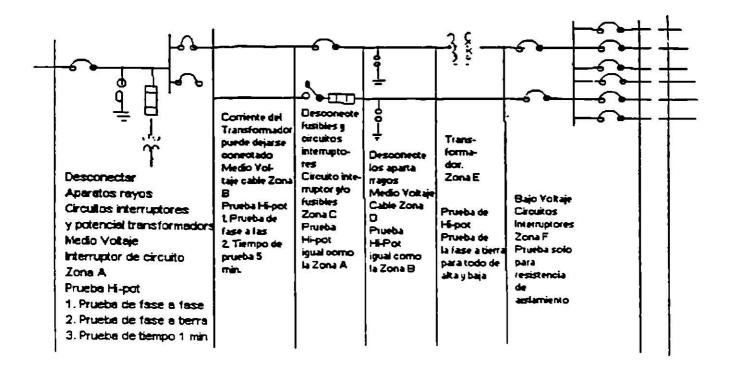


Fig. 2.7 Prueba de alta potencia para cables y equipos asociados y equipos a desconectar durante la prueba.

- Conecte el aparato asegurandose de conectar a una buena tierra el hi-pot de CD (nunca opere el aparato sin esta conexion) y que las conexiones esten apretadas.
- Conecte la linea de retorno para otros conductores que no esten bajo prueba a tierra y a la terminal de toma de tierra o a la protección del aparato. El interruptor de aterrizado del hi-pot debe colocar en un rango adecuado, siendo alrededor 100 Volts de aislante requeridos en la linea de retorno. Conecte la protección y vaina a tierra y a la terminal de tierra del aparato. La terminal de tierra esta provista por derivación de corriente debido a la corona alrededor micrometrica de manera que al corona de corriente no es incluida en la lectura de prueba.
- Conecte un extremo de la salida o linea del cable a la fase deseada del cable bajo prueba, donde la corona de corrientes puede ser supuesta debido a la aplicacion de alto voltaje se recomienda que las conexiones sean roscadas, tapadas con bolsas de plastico o usar un aro de corona o protector de corona y el extremo del cable de salida es conectado a la salida o montaje de linea del aparato de prueba.
- El cable usado para conectar el aparato hi-pot al cable bajo prueba, que es, la linea o cable de salida, debe ser corto y directo y sostenido a la linea del tramo de manera que no toque el suelo o aterriza materiales o superficies.

En caso de extension de cables son usados con la salida o linea hasta alcanzar el cable bajo prueba, de preferencia usar cables cubertos para este objeto. Los cables de extension cubiertos y el cable deben ser corridos desde el empalme cubierto y el cable del hi-pot debe ser conectado con un empalme cubierto, el cual debe ser corrido desde el empalme para evitar fugas posteriores.

En caso de que el cable de extension no sea cubierto, debe ser precavido de colocar para mantener el alambre no cubierto lejos del aterrizado así como de superficies.

- Cuando el cable cubierto es probado, lo recomendado es arreglar la tapa posterior alrededor de 2.54 mm para cada 10 Kv. La cubierta en el aparato, el extremo del cable es conectado a tierra y la cubierta en el otro extremo del cable puede ser encintado y dejado pendiente sin alguna conexion hecha a este.
- El aparato de prueba debe ser conectado dentro de 115 Kv, 60 Hz de salida. Es importante que la CD que proporciona el voltaje tenga una buena regulacion en la linea, porque el voltaje de CD de salida del parato depende de la linea de CD de voltaje de entrada.

El rango de voltaje de prueba en Kv debe ser seleccionado antes de iniciar la prueba.

La potencia ahora puede ser cambiado a encendido (ON) y la prueba empieza uno como paso de voltaje o como prueba en marcha no en marcha.

- Despues de que la prueba es concluida, cambie el interuptor de alto voltaje del parato a la posicion de apagado (OFF). Deje el cable probado descargando a traves del circuito interno del aparato o la tierra externa aplicada al cable por medio de la varilla caliente o guantes. No toque el cable hasta que este completamente descargado.
- Conecte una tierra al cable que fue probado y dejelo conectado por lo menos el doble del tiempo de prueba o hasta que el cable sea conectado dentro del sistema.

CAPITULO 3

PRUEBAS DE CORRIENTE ALTERNA PARA EQUIPOS ELECTRICOS

3.1 Introduccion

Estas pruebas son usadas en campo para mantenimiento o para aceptar equipos electricos, siendo estas pruebas para lo que son transformadores, liquidos aislantes y cables; siendo las pruebas mas usadas la de alto potencial y la de factor de potencia.

La prueba de alto potencial se hace con voltajes superiores al voltaje nominal de operacion siendo pruebas de corta duracion y la prueba del factor de potencia es sobre el aislamiento del sistema y mide el coseno del angulo entre la corriente de la carga y el voltaje aplicado.

3.2 Transformadores

Las pruebas a los transformadores se pueden hacer con un voltaje de CA o CD aunque se prefiere la prueba con CA porque se pueden simular los esfuerzos internos a que se somete un transformador durante condiciones normales de operacion.

Las siguientes son las pruebas que se hacen a un transformador.

- Prueba de alto potencial con CA (hi-pot).
- Prueba del factor de potencia de aislamiento.
- Relacion de vueltas del transformador (TTR).
- Prueba de polaridad.
- Prueba de potecial inducido.
- Prueba de excitación.

Prueba de alto potencial con CA (hi-pot)

Esta prueba se hace para evaluar la condicion de los devanados del transformador, y se hace para todos los voltajes, especialmente para los superiores a 34.5 Kv.

En mantenimiento, el voltaje de prueba no debe exceder del 65 % ya que se pueden dañar los aislamientos de los devanados; y en campo se hace con un voltaje de prueba del 75 % del valor con que se hizo la prueba en fabrica.

Los valores de la prueba para diferentes relaciones de voltaje en transformadores se ve en la tabla 3.1.

PRUEBA DE ALTO POTENCIAL DE C.A. PARA ACEPTACION Y EN MANTENIMIENTO DE RUTINA EN TRANSFORMADORES AUTOENFRIADOS EN ACEITE AISLANTE.

Relación de voltaje (KV)	Voltaje aplicado prueba de fábrica	Voltaje aplicado en campo (KV) 75%	voltaje aplicado (KV)en mtto de rutina 65%
1.20	10	7.50	6.50
2.40	15	11.20	9.75
4.80	19	14.25	12.35
8.70	26	19.5O	16.90
15.00	39	25.5O	22.10
18.00	40	30.00	26.00
25.00	5O	37.5O	32.5O
34.00	70	52.5O	45.5O
46.OO	95	71.25	61.75
69.00	140	105.00	91.00

Prueba de factor de potencia del aislamiento

Esta prueba se hace en transformadores de alto voltaje y mide la perdida de potencia debido a las corrientes de fuga a traves del aislamiento.

El factor de potencia puede se representa como la relacion de watts (W) dividido con los voltamperes; y la ecuacion se escribe de la forma siguiente:

$$f.p. = W/E \cdot I = E \cdot I \cdot \cos \theta / E \cdot I$$

donde:

E = Voltaje de fase

I = Comiente total de fase

9 = Angulo de fase entre E e I

W = Watts

La corriente total de fase (1) es la resultante de las corrientes resistiva (1r) y capacitiva (1c), pero cuando el transformador es energizado con el secundario abierto (sin carga), la corriente resistiva es muy pequeña que es limitada por las perdidas dielectricas.

Esta es una condicion de cuando el factor de potencia es muy bajo y la mayor parte de la corriente es comiente capacitiva; asi entonces se puede representar el factor de potencia como la relacion de la corriente resistiva y la corriente capacitiva.

La figura 3.1 muestra una forma tipica simple de un transformador de 2 devanados y pruebas standard que le son aplicadas y los valores aceptados en la prueba de factor de potencia para transformadores se ven en la tabla 3.2.

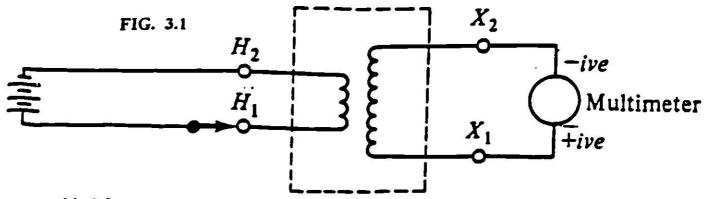


tabla 3.2
VALORES DE FACTORES DE POTENCIA PARA TRANSFORMADORES.

Prueba		% del Factor de Potencia	
	Bueno	límite	Investigar
Devenda U	0.5	05-10	arriba de 1.0
Devanado H	0.5 o menos	0.5 a 1.0	arriba de 1.0
Devanado X	0.5 o menos	0.5 a 1.0	arriba de 1.0
Entre devanados	0.5 o menos	0.5 a 1.0	arriba de 1.0

Prueba de relacion de vueltas del transformador (TTR)

En la prueba se aplican 8 Volts de CA al devanado de bajo voltaje del transformador bajo prueba y el transformador de referencia en el equipo TTR, ademas de que estan conectados atraves de un instrumento detector. Despues que la polaridad ha sido establecida a 8 Volts, cuando el aparato detector indica cero, la lectura que se lee, indica la relacion de vueltas del transformador bajo prueba.

La prueba de relacion de vueltas (TTR) proporciona la siguiente informacion:

- Determina la relacion de las vueltas y la polaridad de los transformadores monofasicos y trifasicos.
 - Confirma la relacion de transformacion de los datos de placa del transformador.
- Determina la relacion de vueltas y polaridad (pero no la relacion de voltaje) de transformadores que no tienen datos de placa. Esta prueba no incluye la posicion de le tap de derivaciones del transformador.
- Identifica perturbaciones en los devanados del transformador, por ejmplo si estos devanados estan abiertos o en corto circuito. Los resultados de esta prueba, deberan estar dentro de un 0.5 % de los datos de placa.

Prueba de polaridad

La prueba de polaridad puede hacerse con un TTR en transformadores de potencia, distribucion y potencial. Sin embargo para transformadores de corriente el TTR no es usado; en lugar se aplica una CD a traves de una bateria y un multimetro y su conexion se ve en la figura 3.1. Esta prueba con una bateria de CD se puede usar en transformadores de potencia y distribucion, pero el TTR es preferible.

El voltaje de CD de la bateria que es usado es de 7.5 volts y el multimetro tiene un rango de voltaje de 3 volts.

Prueba de potencial inducido

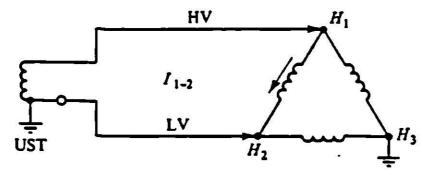
Esta es una prueba que se hace con niveles de voltaje mas altos que los voltajes normales de operacion. Bajo esta prueba el aislamiento entre devanados y entre fases es sometido a un esfuerzo de un 65 % por encima de la prueba a que es sometida en fabrica a una frecuencia arriba de 60 ciclos, por lo general de 200 a 300 ciclos. La frecuancia con que se hace esta prueba es de 5 años.

Como la prueba de potencial inducido sobre exitos el transformador, la frecuancia del potencial aplicado debera ser lo suficiente alta para asegurarnos que la corriente de excitacion del transformador excede cerca de un 30 % de esta misma corriente cuando esta a plena carga, por lo general la frecuancia es de 120 ciclos.

Cuando se aplican frecuencias arriba de 120 ciclos la prueba es mas severa y por esta razon la duración de esta debe ser reducida tal como se muestra en la tabla 3.2.

DURACION DE LA PRUEBA DE POTENCIAL INDUCIDO A DIFERENTES FRECUENCIAS

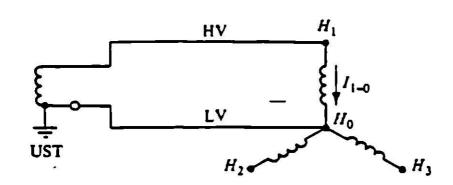
Frecuencia (Hz)	Duración (tiempo) (en segundos)
120 o menos	60
180	40
240	30
300	20
400	18
	Tabla 3.2


El voltaje para empezar esta prueba debera ser de la cuarta parte o menos del voltaje nominal e irse aumentado hasta alcanzarlo en no mas de 15 segundos. Despues de mantener la prueba el tiempo mostrado en la tabla 3.2, se reduce el voltaje en un tiempo no mayor a los 5 segundos, a una cuarta parte del voltaje nominal o menos y en circuito abierto.

Cuando esta prueba se hace a transformadores trifasicos, se puede desarrollar energizando una fase y el voltaje se plica entre lineas con la fase que se esta probando a tierra. Los neutros del devanado pueden o no ser aterrizados durante la prueba

Cuando la prueba de voltaje inducido sobre un devanado, da como resultado un voltaje entre terminales de otro devanado y que exceda la frecuancia del voltaje aplicado, entonces los devanados pueden ser separados y aterrizados.

Prueba de corriente de excitacion


La prueba de comiente de excitacion (ver figura 3.2) cuando es usada en matenimientos preventivos rutinarios para aceptar transformadores, provee un medio de deteccion si tiene corto circuito en sus devanados, problemas en su nucleo, falsos contactos interiores, etc.

<u> </u>	Energize	UST	Ground	_Float_
$\overline{H_1 \cdot H_2}$	$\overline{H_1}$	$\overline{H_2}$	H ₃ , *	$\overline{X_1X_2X_3}$
$H_2 \cdot H_3$	H_2	H_3	H_1 , *	$X_1X_2X_3$
$H_3 - H_1$	H_3	H_1^-	H_2 , *	$X_1X_2X_3$

*If X is wye - connected, X_0 is grounded

(a)

I_e	Energize	UST	<u>Float</u>	Ground
$\overline{H_1 - H_0}$	H_{L}	H_0	$H_2H_3, X_1X_2X_3$	3.=3 (**)
$H_2 - H_0$	H_2	H_{0}	H_1H_3 , $X_1X_2X_3$	•
$H_3 - H_0$	H_3	H_{0}	H_1H_2 , $X_1X_2X_3$	

*If X is wye - connected, X_0 is grounded

(b)

FIG. 3.2

La corriente de excitación (o corriente en vacio de el transformador) en un transformador es la corriente en el primario del mismo cuando es aplicado un voltaje en este lado y el secundario se mantiene en circuito abierto.

Esta prueba se realiza de la siguiete manera :

En la figura 3.2 (a) se representa la fase H 1-2 energizada de una conexion trifasica en delta. Tres medidas son hechas de rutina (H 1-2, H 2-3 y H 3-1) a voltajes abajo del nominal, no excediendo de 2.5 Kv ó 10 Kv dependiendo de la relacion que tenga el equipo de prueba. El devanado de bajo voltaje no es mostrado en la figura, esta aislado de la fuente de voltaje o carga durante la prueba. Si la conexion esta en estrella, el neutro esta aterrizado.

La figura 3.2 (b) ilustra la misma prueba con una fase energizada, estando un transformador trifasico conectado en estrella.

3.3 Pruebas de liquidos aislantes

Los liquidos aislantes tales como aceites, silicon, etc., son usados en transformadores, interruptores, capacitores, debido a que estos liquidos aislantes se deterioran durante su uso, es necesario monitorearios y hacerles pruebas para determinar sus propiedades dielectricas.

Este punto describe las pruebas de voltaje alterno y de factor de potencia para determinar las condiciones de estos liquidos y prevenir fallas.

Prueba dielectrica en liquidos (Cup Tests)

Esta prueba de sobre voltaje alterno se aplica a los liquidos aislantes para determinar su punto de ruptura. Los valores tipicos de ruptura son mostrados en la tabla 3.3.

VALORES DIELÉCTRICOS PARA LIQUIDOS AISLANTES EN TRANSFORMADORES

Tipos de liquidos	Ruptura Dieléctrica en (KV) Satisfactorio	Se necesita
	regenerar	
Aceite	23	Menor de 23
Askerel	26	Menor de 25
Silicone	26	Menor de 26
Wecosol	26	Menor de 26

Tabla 3.3.

La prueba dielectrica consiste en tomar una mustra del liquido aislante del transformador en un pequeño o tasa (cup) y aplicarie voltaje entre los electrodos sumergidos en dicho aceite.

La prueba es repetida por lo menos 5 veces para determinar el promedio de ruptura en Kv.

En liquidos como Askarel, aceite, es utilizado un recipiente (cup) que tiene en su interior los electrodos separados 2.5 mm = 0.1 pulgadas. Esta prueba es descrita paso por paso en seguida.

Prueba dielectrica ASTM D-877

Generalmente los equipos con que se va a efecturar una prueba de rigidez dielectrica son portatiles.

Las pruebas dielectricas cuya ruptura en Kv esten en el orden de 40 kv, son aceptables.

Las instrucciones y procedimientos son los siguientes:

- a) .- Los electrodos y la copa deberan limpiarse con papel de seda o gamuza que esten limpios y secos. El espacio entre electrodos es una medida standard de 0.1 pulgadas.
- b) .- Los electrodos y la copa deberan estar libres de gasolinas o solventes utilizados en su limpieza y secado.
- c) .- Despues de haber cumplido con los incisos (a) y (b), la copa es llevada con un liquido aislante que se va a probar y una vez que este completamente estatico (sin burbujas), se aplica voltaje a razon de 3 ky / seg. hasta que sucede la ruptura.
- d) .- Al comenzar cada prueba, los electrodos deben de ser examinados para cerciorarse de que esten libres de impurezas, acumulación de carbon, separación de electrodos, etc.
- e) .- Si en una prueba, la ruptura salio por abajo de los valores establecidos para que el aceite sea aceptado, los electrodos y la copa deberan ser limpiados y preparados antes de hacer una segunda prueba.
- f) .- La rigidez dielectrica se ve alterada por impurezas y para obtener resultados satisfactorios, el aceite debe de ser filtrado varias veces hasta obtener puntos de ruptura de acuerdo con los valores minimos establecidos.
- g) .- La temperatura que debe de haber al hacer una prueba no debe de ser menor de 20 °C (68 °F).
- h) .- El voltaje aplicado comenzara de cero y se incrementara a razon de 3 kv / seg. hasta obtener el punto de ruptura.

Procedimiento para el mustreo de liquidos aislantes

Los recipientes de vidrio son recomendados, para las muetras de aceite a las que se le van hacer las pruebas de rigidez dielectrica debido a que facilmente pueden inspeccionarse y cerciorarse de que estan completamente limpios.

Muestreo de aceite de transformadores

Las instrucciones generales para un muetreo de aceite de transformadores son las siguientes:

- 1.- Para las pruebas de rigidez dielectrica, acidez y tension interfacial, con una mustra en un recipiente cuyo volumen sea menor a los 2 litros es suficiente.
 - 2.- Las muestras deberan ser tomadas en dias secos, y con poca humedad.
- 3.- Las muestras no deberan de ser tomadas en dias lluviosos que tienen por una humedad atmosferica arriba del 70 %.
 - 4.- Las muestras hay que protegerlas del viento y del polvo.
- 5.- Si las muestras son tomadas de valvulas, hay que limpiarlas para que esten libres de polvo y otros contaminantes.

Prueba del factor de potencia

El factor de potencia de un liquido aislante es el valor que se obtiene del coseno del angulo de desfasamiento entre el voltaje aplicado y la corriente resultante. El facor de potencia indica la perdida de capacidad dielectrica del liquido aislante y que aumenta al incrementarse la temperatura. La prueba del factor de potencia es ampliamente usada en pruebas de aceptacion y mantenimientos preventivos en liquidos aislantes.

Esta prueba es hecha con la norma ASTM D-924

Un aceite aislante en buen estado, no debe exceder de 0.05 % a 20 °C. Un factor de potencia alto en aceites o liquidos aislantes es indicio de deterioro y/o contaminacion con sedimentos, carbon, humedad, barniz etc.. Un factor de potencia en aceite usado, que sea mayor que el 0.5 %, debera ser analizado en el laboratorio para determinar su origen.

En aceites aislantes como askarel con un factor de potencia alto es considerado mayor a 2.0 %.

Un aceite nuevo se considera con un factor de potencia de 0.05 % o menos a una temperatura de 20 °C.

El carbon o asfalto en el aceite causa decoloracion. El carbon no necesariamente causa factor de potencia alto a menos de que presente humedad.

Las siguientes sugerencias sirven de guia para evaluar una prueba del factor de potencia:

Un aceite que tenga un factor de potencia cuyo valor se encuentre entre 0.5 % y 2 % a 20 °C se considera satisfactorio.

Un aceite que tenga un factor de potencia cuyo valor sea superior al 2 % a 20 °C debera ser regenerado.

APENDICE

Apartarrayos .- Es un dispositivo que nos permite proteger las instalaciones contra sobretensiones de origen atmosferico, el cual debe ser conectado un extremo a la linea y el otro extremo a tierra necesitandose vencer una resistencia para aterrizarse.

Apartarrayos tipo autovalvular .- Este consiste de varias capas de explosores conectados en serie por medio de resistencias variables cuya funcion es dar una operacion mas sensible y precisa. Se emplea en los sistemas que opera a grandes tensiones.

Apartarrayos tipo resistencia variable .- Este funda su principio de operacion, es decir, con dos explosores, y se conecta en serie a una resistencia variable. Se emplea en tensiones medianas y en sistemas de distribucion.

Capacitancia .- Es la propiedad de un circuito que nos dice que el circuito se opone a cualquier cambio en el voltaje.

Corriente de absorcion .- Esta corriente estal alta como el voltaje de prueba que se aplica y decrece a medida que el tiempo de aplicacion de voltaje aumenta.

Corriente de carga capacitiva .- Esta es tan alta como el voltaje que se aplica, es una funcion del tiempo, esto es que la corriente de carga inicial y por lo tanto no debe evaluarse en el tiempo que el voltaje es aplicado. Las lecturas de esta prueba no deben ser tomadas hasta que la corriente haya descendido hasta un valor bajo.

Corriente de fuga .- Esta es la corriente que es usada para evaluar las condiciones del aislamiento que esta sometida a prueba debera permitir que la corriente volumetrica se estabilice antes de tornar las lecturas de la misma.

Corriente total .- Es el promedio de todas las corrientes de fugas.

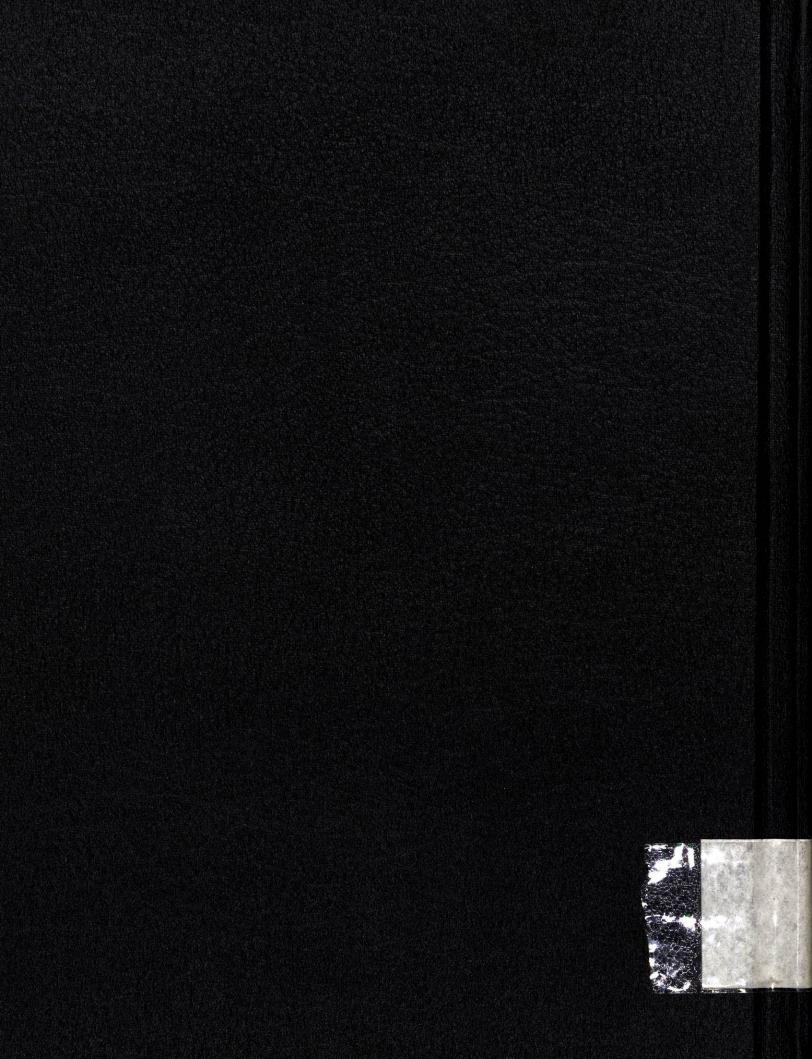
Cuchillas desconectadoras .- Es un elemento que sirve para desconectar fisicamente un circuito electrico, por lo general se operan sin carga, pero con algunos aditamentos se puede con carga, hasta ciertos limites.

Descargas indirectas .- Son sobretensiones que se alamcenan sobre las lineas cargas electrostaticas que al ocurrur la descarga atmosferica se parte en dos y viajan en ambos sentidis de la linea a la velocidad de la luz y dañan el equipo.

Interruptor .- Es un dispositivo cuya funcion es interrumpir y restablecer la continuidad de un circuito electrico. Si la operacion se efectua sin carga (corriente), el interruptor se llama desconectador o cuchilla desconectadora, si en cambio si la apertura es con carga (corriente nominal) o con corriente de corto circuito (en caso de alguna perturbacion), el interruptor se le llama disyuntor o interruptor de potencia.

Pararrayos .- Su objetivo es ofrecer una proteccion contra los rayos, descargando las pequeñas cargas electricas tan pronto como se acumulan. Los apartarrayos acaban en una punta porque los abjetos agudos sueltan las cargas mas de prisa que los de cualquier otra forma., estos estan conectados directamente a tierra.

APENDICE


Relevador .- Se puede definir como un dispositivo eletrico que se localiza entre el circuito principal y el interruptor de tal manera que cualquier condicion anormal en el circuito hace operar al relevador.

Tap .- La funcion de un Tap o cambiador de derivacion en los transformadores es permitir la disponibilidad de distintos valores arriba y abajo de la tension nominal.

Transformador.- Es aquel que puede transferir energia de un circuito a otro por medios electromagneticos, transformando el voltaje y la corriente sin necesidad de que esten conectados.

BIBLIOGRAFIA

- 1.- Fundamentos de Electricidad Electronica Slurzberg y Osterheld McGraw Hill
- 2.- Analisis de Sistemas Electricos de Potencia William D. Stevenson McGraw Hill
- 3.- El ABC de las Instalaciones Electricas Industriales. Giberto Enriquez Harper.
- 4.- Electrical Equipament Testing and Mainteinance.
 Gill.
 Editorial Prentice Hall.
- 5.- Elementos de Centrales Electricas II Gilberto Enriquez Harper Limusa

